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Abstract

This thesis develops a method to model the acoustic field generated by a
monopole source placed in a moving rectangular duct. The walls of the duct are assumed
to be infinitesimally thin and the source is placed at the center of the duct. The total
acoustic pressure is written in terms of the free-space pressure, or incident pressure, and
the scattered pressure. The scattered pressure is the augmentation to the incident pressure
due to the presence of the duct. It satisfies a homogeneous wave equation and is
discontinuous across the duct walls. Utilizing an integral representation of the scattered
pressure, a set of singular boundary integral equations governing the unknown jump in
scattered pressure is derived. This equation is solved by the method of collocation after
representing the jump in pressure as a double series of shape functions. The solution
obtained is then substituted back into the integral representation to determine the
scattered pressure, and the total acoustic pressure at any point in the field. A few
examples are included to illustrate the influence of various geometric and kinematic

parameters on the radiated sound field.
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1. Introduction

The understanding and accurate prediction of sound radiation associated with
aircraft applications is of current interest. Recently, a great deal of attention has been
directed to modeling the ultrahigh by-pass ratio turbo-fan engine (ducted propfan) due to
its efficiency and shrouded propeller design. This engine has become attractive as an
efficient component of future commercial transport aircraft. It is known that an
unshrouded propeller generates an acoustic field which tends to radiate in the lateral
direction. By housing the propeller in a shroud or duct (as in the ducted propfan),
potential benefits of noise reduction exist since the duct provides a shield in the primary
radiation direction. The ability to accurately model this propeller noise in both the ducted
and unducted cases is of great importance. Modeling techniques such as computational
fluid dynamics (CFD), finite element methods (FEM) and boundary integral techniques
have been utilized to predict the acoustic benefits of the ducted propfan. Eversman [1]
developed a finite element model for the generation, propagation and radiation of noise of
a ducted fan. He also constructed a free-field propeller model compatible with the finite
element formulation and conducted noise studies as presented in ref. [1]. Radiated field
results for both the ducted and unducted propeller were obtained. Lan [2] and Buhler [3]
developed separate prediction methods based on a boundary integral technique for the
acoustic field generated by a propeller within a circular, rigid duct.

The presence of a duct or shroud was shown in all above studies to reduce the
level of noise radiated from a propeller, at least in the primary radiation direction. With

the presence of the shroud, an acoustically treated duct wall can also be utilized to further



increase the level of noise reduction obtained. The work of Kosanchick [4] was an
extension of the work presented in refs. [2,3] and included an acoustically treated duct
wall. Dunn, Tweed and Farassat [5] also presented a similar model of the acoustic field
generated by a ducted propfan. Their boundary integral equation technique modeled
acoustically treated walls, but only rigid wall results were presented in ref. [5]. The
models in refs. [2-5] required fewer overall computations than the finite element
technique since the boundary integral method only requires dealing with a surface
integration along the duct as compared to finite element computations over the entire
region of interest. However, the boundary integral technique cannot be applied if
complex geometrical models or complex mean flows are involved.

As it is of great importance to develop accurate prediction methods of sound
radiation from a ducted propeller, it is also of importance to understand the relationship
between the duct geometry and source type in regard to noise reduction. The analysis in
refs. [2-4] was modified and applied to a point source rather than a propeller model by

Myers [6]. With a simpler source model, comparisons could be made between the

boundary integral technique and the CFD approach. Ozyéritkk and Long [7] utilized a
finite-difference approach in solving this particular problem, and their results were found
to be in agreement with those of ref. [6].

The studies previously discussed in refs. [1-6] dealt with only an axisymmetric
duct configuration. However, rectangular duct configurations are often utilized for
experimental inlet research. Thus, it is the purpose of the current work to develop a

boundary integral technique similar to those in refs. [2-6] to describe radiation from a



monopole or point source placed within a rectangular duct. This particular duct geometry
lacks symmetry and requires significantly greater computational effort than the problems
previously discussed in refs. [2-4,6]. The source was restricted to be a monopole so that
at least the incident field would be symmetric in form. The duct walls are assumed to be
rigid and infinitesimally thin. The current work utilizes a scattering formulation which
decouples the effects of the duct and source [2-6]. The scattered pressure is
discontinuous across the walls of the duct. It is governed by a generalized wave equation
with a source term that is proportional to its unknown jump across the duct walls. An
integral representation for the solution of this in terms of this jump in scattered pressure
across the duct surface is obtained. The scattered pressure jumps are then represented by
two carefully chosen shape function expansions. The free-space pressure is used as the
input data and the method of collocation is utilized to solve a system of algebraic
equations for the coefficients of the shape function expansions. From these coefficients,
the jump in scattered pressure along the duct surface is obtained and substituted into the
original integral representation to obtain the scattered pressure. The total acoustic
pressure is obtained through the sum of the free-space or incident pressure and the
scattered pressure for a particular field point.

The remainder of this thesis discusses the formulation and validation of the
boundary integral technique in its application to the rectangular duct with a monopole
source at its center. In particular, Chapter 2 details the development of the governing
boundary integral equation. Chapter 3 presents the numerical details necessary to

accurately obtain the solution to the set of algebraic equations. The impact of the choice



of parameters on the solution is shown through a few example problems as discussed in

Chapter 4.



2. Theory

This chapter presents the development of the governing equations required for the

prediction of the acoustic field radiated from a source in a moving rectangular duct.

2.1 Integral Representation

An acoustic source in an infinitesimally thin, rigid, rectangular duct is examined.

The rectangle is of length L, width 2b and height 2a as shown in Figure 1. A body-fixed

cartesian coordinate system X, placed at the center of the moving duct, and an inertially-
fixed cartesian coordinate system X, are used to describe the duct. The duct is assumed
to be moving subsonically at velocity V, in the negative x, direction of the inertially-fixed
frame. The objective is to obtain the acoustic field radiated to free space through the
open ends of the duct.

By linearizing the ideal fluid equations of motion it can be shown that acoustic
wave propagation in isentropic flow with no body forces is governed by the wave

equation which can be written in the form

O’p, sciz—z—f‘-—vzpl =q(X,1) (2.1)
where p, is the total acoustic pressure, q(X,t)is the noise source, and c is the speed of
sound in the fluid medium.

The total acoustic pressure is written in terms of incident and scattered acoustic

pressure components as

pl = p| + ps (2-2)



where p, is the free-space pressure due to the monopole source alone and p, is the
augmentation of the incident pressure due to the presence of the rectangular duct.
Through the use of this scattering formulation, the effects of the duct and noise source are
decoupled and can be handled separately. The incident field satisfies

Op, = q(%,t) (2.3)

It then follows that the scattered field must satisfy the homogeneous wave equation

O%p, =0 (2.4)
The objective is to obtain an integral representation for the scattered field along with the
appropriate boundary conditions at the duct surface and a radiation condition specifying
that the scattered field is outgoing in the region exterior to the duct.

Let f(x)=0 describe the surface of the thin, rigid duct moving in a direction
tangent to itself where f is defined such that Vf = fi and n is the unit outward normal to
the duct surface. The presence of the solid duct walls gives rise to a discontinuity in
scattered pressure across the duct surface. Through the use of generalized derivatives and
eqn.(2.4), it can be shown that the scattered pressure is a solution to the generalized wave
equation

O%p,=V -[ap,n5(f)] (2.5)
where §(s) is the Dirac delta function and Ap, is the jump in scattered pressure across the
duct surface [8]. The bars over the differential operators in eqn. (2.5) signify generalized
differentiation. Equation (2.5) is a special form of the well-known Ffowcs Williams-

Hawkings (FW-H) equation {8,9].



By solving eqn.(2.5) utilizing the free-space Green’s function for the wave

equation, an integral representation for p, is obtained in the form

18 [[ap,cose Ap, cos®
PP JRRLIA | Fo uih T S e S Y TS (2.6)
cot |ri-M,]]. rPll-M, .

f=0 f=0

The details of the derivation of eqn. (2.6) are given in number of earlier publications [8]
and therefore will not be repeated here. In egn. (2.6), r=[f|=|x-y| is the magnitude of the
radiation vector representing the distance from a source point at y on f=0 to an observer
at X; M, is the component of the surface Mach number in the direction of the radiation
vector; 0 is the angle between T and the unit normal to the surface of the duct n at the

source location; dS is the elemental area of the duct surface f=0. The integrands are

evaluated at the emission time 1~ which is a solution to the retarded time equation

{—t——=0 (2.7)
Cc
There is only one solution t° for the retarded time equation since the duct is assumed to
be moving subsonically through the fluid medium. Physically, ¥ is the emission time of
signals generated by a source on the duct surface that are received by an observer at
position X at time t.
By applying the appropriate boundary conditions to egn. (2.6), an integral

equation will be developed from which the unknown jump in scattered pressure AP, is

determined over the surface of the duct. Once Ap, is known, the scattered acoustic field

for any position and time ()‘(,t) can be determined using eqn. (2.6) again.



The following details of the analysis are simplified if eqn. (2.6) is expressed in
terms of the body-fixed coordinate system. To relate the observer and source positions in
the body-fixed reference frame to the observer and source positions in the inertially-fixed

reference frame, the following transformation is utilized:

(2.8)

Here 7, is the unit vector in the 3-direction.

The analytical development of the boundary integral equation to follow can be
carried out for an arbitrary incident pressure field p. However, computational
complexities make it desirable to introduce some symmetry into the problem. Thus, at
this stage it is assumed that the acoustic source is a monopole and, for further simplicity,
it is positioned at the origin of the body-fixed coordinate system (i.e., at the center of the
duct). Among other things, this restriction ensures that the scattered pressure jumps are
identical on surfaces x,=1+b and X,=z+a. The incident field corresponding to a moving

monopole source is reviewed in the next section.

2.2 Incident Monopole Field

The incident field is the field due to the source alone without the presence of the
duct. The solution to eqn. (2.3) can be obtained for the monopole source in terms of a

complex velocity potential that satisfies

1 &*¢. .
0%, = ?—at;f' -V, = Ae"“"ﬁ(xg + Vt)ﬁ(xz)ﬁ(xl) (29



where A is defined as the source strength. The solution to eqn. (2.9) is well known and
appears, for example, in Morse and Ingard [10]. In terms of the body-fixed coordinates

the solution presented in [10] is

_ _A —iot _ MX3
O(X,t) = ﬁB—o—exp{ia(—B— + JB_DH (2.10)

where the symbol o, which is used throughout this work, is defined by o = w/cf, and

B2 =1- M2. Use of the relation

o9

PF‘PDQ:-%(@ +vﬂ] (2.11)

ot 12),€

yields the incident monopole complex pressure field in the form

A oo ia(_ IBE SIN Bo) 5 :

— C “MXa |

P = Pe ze + 72 em[ (I B°J (2.12)
anp Bo (Bo)

2
where Bo=%+xf+ x2 and p, is the fluid density. As noted above, the monopole

complex pressure field expressed in eqn. (2.12) will be the only incident field considered
here. As with all quantities in the following, the physical pressure is taken to be the real

part of the complex incident pressure.

2.3 Boundary Integral Formulation

The analysis involved in formulating the boundary integral equation requires
lengthy algebraic manipulations of eqn. (2.6) that are simplified if it is written in terms of

the body-fixed coordinates. For convenience define £, n and C as



Y;—X
é=—JB—’, n=Y:-X,» &=Yi-Xi (2.13)

These abbreviations are utilized frequently throughout this work. The radiation vector,
which extends from the duct surface f=0 to an observer at X, is

F=x-y=X-Y-V(t-1)], (2.14)
Substitution of eqn. (2.14) into the retarded time equation eqn.(2.7), leads to a quadratic

equation for the radiation distance at time 1, whose solution is

(Mg + et +n?+?)
r= ; =c(t-1) (2.15)

The component of the surface Mach number in the direction of the radiation vector is

—-|M 2
_ o[MeB+mr] (2.16)

r

Mr=Mi3'

- |-

where 1 is the magnitude of the radiation vector. Evaluation of eqn. (2.16) at the emission

time t° and use of eqn. (2.15) yields

(2.17)
The factor cos8 is given by

cos@ = — (2.18)

Finally, the scattered pressure jump Ap, can be modeled in the form suggested by the

incident field as

—iaMX;

Ap(R.,t)=n(X.)e™ e 5 (2.19)

where X, represents surface coordinates. Evaluation of eqn. (2.19) at the emission time

gives

10



jor®  -iaMY,

8p,(%,.7)=n(Y)e e e s (2.20)

Substitution of egns. (2.17), (2.18) and (2.20) into the two surface integrals representing

the scattered pressure in eqn. (2.6), then puts the integral representation of p; in the form

s  (2.21)

10 n(¥,)h-Fe T (¥ )a-Fe e
cot dS-

4anp,(X,t)=-— -
(r') VEE+ni+¢’

=0 f=0

The time derivative of the first term in eqn. (2.21) is calculated at fixed X. It can
be obtained using the material derivative operator of eqn. (2.11). After algebraic

manipulations, eqn. (2.21) can be rewritten as a single surface integral in the form

- o -iaMX; . ia 1 .
anPp,(X,t)=e™"e" p m (Y,)n Pl 32 exp(wn)&z +n°+¢° )dS (2.22)
E, +MN°+6 (§2+n2+q2)

f=0

Equation (2.22) is the integral representation of the scattered pressure written in terms of
body-fixed coordinates. At this stage, eqn. (2.22) applies for an arbitrary duct cross-
section.

In the next phase of the analysis, the incident field is utilized in conjunction with
eqn. (2.22) to form the boundary integral equation. To accomplish this goal, a boundary
condition is introduced for a duct with rigid walls. The no penetration condition is
applied, namely @,-fi=0 on the duct surface f=0. Substituting the no penetration

boundary condition into the linearized momentum equation yields

__B(aét- A) =_%.E_'=o (2.23)

Then use of eqn. (2.2) implies that the boundary condition on the scattered pressure is

p

o, __9n (2.24)

on on

i1



on the duct surface. Therefore, after taking the normal derivative of eqn. (2.22) and

utilizing eqn. (2.24), it follows that

- 47'13%(5(,0 =gt Cj%x‘i Jﬂ (?s)ﬁ ’ { i 21 2)3/1 ]exp(ia,/ §Z + 7'|Z + szds (225)
n+g

n n Eened (g

fo0
in the limit as the observer at X approaches the duct surface f=0. Equation (2.25) is the
boundary integral equation whose solution for the unknown jump amplitude m is the
object of the remainder of this work.

The integral equation (2.25) is now specialized for the rectangular duct by noting
that, due to the symmetry of the walls and the positioning of the acoustic source, the
jumps in scattered pressure are identical for X, = *a, i.e., the top and bottom surfaces, (see
Figure 1) and similarly for x,= b, i.e., the two side surfaces. Thus, the jump amplitude

nt is defined separately for each independent surface as

. ()_(,,t)={m(XhX2) on X.=ia} (2.26)

ﬂz(X:,X]) on Xz =1b

Further, the amplitudes m, and m, are represented as expansions in terms of shape
functions to model the expected oscillatory behavior present on the surface of the duct.

Thus 7, and mt, are written as

Ki-1

anj,k(p,‘(yl)wk(Yl)

i K2+Kl1-1

ﬂz(Y3,Y1)= g] k;z—,‘“a""wi(yz)w"(yl)

1-1
m(Ys.Ya)= & (227)

[T

where K|, K, and J are the number of functions included to describe n on the surfaces
X,=ta and X,=+b and along the length of the duct, respectively. The unknown

coefficients a;, in eqn. (2.27) are to be determined. The specific forms chosen for the

12



shape functions ¢, and y; will be explored in detail in Chapter 3 of this thesis. The
integral equation for the rigid, rectangular duct then appears in terms of contributions

from each of its four sides in the form

=0 k

ap:(X,1) amxy) & (121 Ki-1 J-1 KI+K2-1
p2RRD (o) LIS V10 41] + £ T2 a1 41 (228)
on on [j=0 x=0 i =K1

)

where

(2.29)

and where the function F is defined by

F(&,n.6) =[ la : ;/z}exr{ia(\/é’ +n?+ c’)} (230

Ern S (gtgd)

In solving eqn. (2.28) later it will be required that the integral equation be
evaluated for observers on the top surface X,=a and on the side surface X,=b. The
analysis here will be presented only for an observer positioned on the top surface, and it
will be assumed that X, is on the interval -b<X,<b so that the observer is never precisely
at the corner of the duct. The same type of analysis can also be utilized when an observer
is positioned on the side surface of the rectangular duct. It is unnecessary to repeat the
derivation however, because the result follows by analogy with that for the observer on

the top surface by simply interchanging X, and X,, Y, and Y,, § and n,and aand b.
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The normal (or X,) derivatives indicated in eqn. (2.28) are now calculated to put
the integral equation in its desired final form. The left-hand side of eqn. (2.28) follows

from eqn. (2.12) evaluated on X,=a as

op, (X, t —iaMX,
a(x, )—P(‘)(X3) e p e (2.31)
where
PO(X;) = %%:_ (BX)I’” ¢ayB. 3";)(’ (1-iay/B,) + ia Bo{l - ia(_ r\gx, + JE"JH (2.32)
o Xi=a

and B, is as previously defined. The integrand in the term I{{ of eqn. (2.28) is singular

when the observer and source points coincide (i.e., X;=Y;, X,=Y,, X,=Y,=a), but the

other three terms in eqn. (2.28) are non-singular as long as X, # b. Since the integrals in
eqn. (2.28) are to be evaluated numerically, the singularity in the first integral must be
removed and treated analytically. Thus, the normal derivative of 1} will only be written
symbolically at this time. On the other hand, the normal derivative of the three non-
singular terms can be calculated directly for X,=a. The manipulations required are purely
algebraic and, after dividing out the common exponential factor, the boundary integral

equation becomes

—47p Pi(l) =KW+ K@D+ @+ g® (2.33)
where
K®= lim —Z Za IV Z Zak hmi(lz (2.34)
Xi—>a 6X|j =0 k=0 » » X|—a 6X|



@ 0 J-1 KI+K2-1 ) J-1 KlsK2-1 L/2 a
K® = )Pm KJ 0 klea“ = _JZ() kzl(la“‘ !/ZQJ(YJ)IWR(Y'XY‘_aXXZ— bﬁ(&,b— XZ'Y‘—a) dY.dY,
1 1J= = = = - -8
(2.35)
8 1-1 K-t I-t KI-1 L2 b
M= lim — ) = . 2
K )HT- X, j§) E'oaj'k l"ﬂ jgo kzsloa"kl.“;z(p’(y})-jhwk (YZXF(E” n,2a) +4a G(é n,2a)] dY2dYs
K® ) 0 Jz-:l Kl+§2—l @ J-1 KisK2-1 L2 2 ( X b b
- )!:T-a_x;ﬁo k=K|aJ'k b= Eﬂ ksleaj,kLJ/’Z(pj(YJ):‘;\u; Yo Yl—aXX1+ x}(&’ * XI’Yl—a) dY,dYs
and where the function G is defined by
3 3 (i)’
G(e.n.g)= T S (2.36)

(é’+n1+c’) (a’m%’) (é’+n2+c’)
In the following section, the singular term given in eqn. (2.34) will be treated
analytically. The other three terms involve only non-singular integrals, and these will be

evaluated numerically in the form in which they are presented in eqn. (2.35).

2.4 Singularity Analysis
The singular integral term that appears in eqn. (2.34) contains the integral defined
in eqn. (2.29). If the symbol h is introduced, where h=X-a, it can be written as

L N A ; (237)
im -t n o v rle alav.av,) |

Define I (Y,,h) to be the transverse, inner integral in eqn. (2.37) so that

b
1(Ys,h) = Jw, (Y2)F(E.n, h)ay: (2.38)

This single integral is considered first; it is singular when &, n and h vanish, which occurs
when the observer point coincides with the source point on X,=a. By expanding the

integrand for small values of &, 1 and h, the following expression is obtained

_ -1 (i)'} AW . (2.39)
v, F=(A.+ Am)((B)’“ + ZJEJ ~ " o(1)

in which B=&>+n’+h?, and
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, \IJ” X
A= Wk(XZ)a A=V k(Xz), A= %
The singular terms shown explicitly in eqn. (2.39) are denoted as (y,F),, and eqn. (2.38)

is written as

1(Y,h) = _i,[‘”* F- (ka)n]de + _lfb(ka)ode (2.40)
The first integral in eqn. (2.40) is completely non-singular as &, n and h approach
zero. The second involves only elementary integrations which can be evaluated

analytically by changing the integration variable to n=Y,-X,. This results in

A;[-é‘/_z—f:l]——ﬁ—log(n+,/§2+n’+h’)]—wﬁl (241)

Here the 1 limits are defined by n=-b-X, and n,=b-X,; therefore, neither limit vanishes if

-b<X,<b and only the last term on the right hand side of eqn. (2.41) is singular as £ and h
go to zero.

The expression in eqn. (2.40), including the result of eqn. (2.41), is now

substituted back into eqn. (2.37). At this stage of the analysis, each of the non-singular

integrals that appear can be differentiated with respect to h and the limit as h goes to zero

can be calculated directly. This yields

(O]

. dlk b _
m? = f,,"’ J(Y3) jb[ka (WkF)O]h=0dedY3

. Lf’ (Pj(Y]{(i:) Aalog(n+\/gz—+_n—2)+—“\—'—7+ (i(;) AI\JQZ*’WZ +A2[‘/ézn_z —log(n+ £2+n2)]j|dY3
+n

-L/2 §2+n
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L/2

n.
.0 n
catim T oy . 2.42
A°!.l-.n}) oh _Lj/z(p’(Y )Léz " hz)kz + nz + hz} dYJ ( )
n.

The first two terms on the right in eqn. (2.42) can be evaluated numerically without

difficulty, and will not be discussed further. The entire singular behavior of the boundary
integral equation (2.33) has now been isolated in the third term, and this is the subject of
the remainder of this section.

To further analyze the singular term in eqn. (2.42), define the function F as

n+

Fol£,h) = = (2.43)

Eement|

Since neither 1, nor n_ vanish, the function F, is non-singular when £=h=0. The third

term on the right side of eqn. (2.42) is rewritten as

0
=— A lim— 2.44
Q,= - Aslim ah{hl.} (2.449)
where
2 @AY, FolE, h
I,= | -J—(—]Z)—i(a——)dYg (2.45)
L2 E v h?

Given F, as defined in eqn. (2.43), define a sequence of functions F,, according to

Fr(E:h) = Fn(0,h) +& Frai (€, 1) (2.46)
for m=0,1,2,... . After use of eqn. (2.46) with m=0, I can be expressed as

12 ,(Ys) L12 E,Fl(i’h)‘Pj(Yl)

I, = FolO,h dY;+
: 0( )-1'!'/z§2+h2 ’ —IJ:/Z £+ n?

dy; (2.47)

Because the second term of eqn. (2.47) is still singular when h=0, eqn. (2.46) is applied

again with m=1 which yields
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L2 (p‘(Y3) L2 §(p.(Y3) L2 §2Fz(§,h)(p‘(Y3)
=Fo(0,h) | — ,h : — 2.48
L=F (0 )—LIZ £+ p? vh (0 )-J/z El4p? : -L[/z E+h? dvs ( )
The third integral in eqn. (2.48) is now non-singular at h=0.
From eqn. (2.46) it follows that
. | Fo(&:h) = Fo(0,h) | _ &F4(0,h)
F,(0,h) = éﬁ‘})[ : -0 (2.49)

In addition, making use of the fact that f£=Y,-X,, it is seen that the first integral in eqn.

(2.48) can be rewritten as

L2 (Dj(Yg)dY] B _E_‘?_ L2 3
—i!/z E2en?  hoX,. ,!,2 ( s)tan (h)dY3 (2.50)
It then follows that
0 _ L2 E2F,(E,h)e (Y3)
lim = (ht,) = lim ah{ PE(0. h)_ f _0{Vs)tan '(i)dYﬂ h-glz_z(fu)hz—JdY’ (2.51)

The limits in eqn. (2.51) can now be evaluated. The first term on the right is

[ o) o : RTINS
m{—ﬁ P GXE_LI/Z‘»,-(YJ) (h)dYﬁBFo(Oh)aX]l{ ot Y;
- tim{p FelOh) 1 9 e )dY +BR0.0) -2 écp(Y’)dy (2.52)
h—0 oh L2 Er+ h? 3+PFe &Xy-in EX4n )

after differentiation. The first term on the right hand side of eqn. (2.52) can yield a non-
zero limit only because of contributions of the integral at the singular point £=0. The
limit is therefore obtained by reducing the integration range to small local interval -6<€<8

so that it becomes

} =0 (2.53)
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because OF,/6h vanishes at h=0. The second term on the right of eqn. (2.52) is

expressible in terms of a Cauchy principal value integral as

o L2 .(Y3)
1 =2 4
! b X _'Lf/z £

Y (2.54)

after using the fact that F(0,0)=2.

Now, consider the second term on the right side of eqn. (2.51). It is

5 { e E7F, (2, h)o,(Ys) dY3}=

lim—<h
h—0 -L72 £l h?

(2.55)
T Fz(g,o)q>).(Y,)dYﬁnm{thz : FFZ(“)—Zth(g'h)}p,(Yg)dvg}

-Ln2 n0 | -ir2 24 h? ch B+ h?
It is easily shown, by the same procedure that led to eqn. (2.53), that the local
contribution of the second term in eqn. (2.55) also vanishes.

Finally, because

_F(80)-Fo(00)-EFi(0.0) _ F.(8.0)-Fo(0) (2.56)
£ 3
it follows from eqn. (2.55) and (2.56) that eqn. (2.44) is

F2(.0)

n+ R
3 5 2oy Lz (Y 1

Q, = -Aolim=-(hl,) = - Ac§2p—~ + _J(&_}) Y+ | —Lz’l —2—"—2 -ﬁ ayst  (2.57)
h—0 3-Lr2 -tz & JT'I +E N ni|,,.

where n, and 7). are as previously defined. The shape functions @; will be defined in the
following chapter of this thesis and it will be shown there that an analytical expression for
the Cauchy principal value integral can be obtained. It should be emphasized here that
the second integral in eqn. (2.57) is non-singular and can be evaluated numerically

without any difficulty.



2.5 Summary

At this point it is appropriate to summarize the lengthy analysis just presented.
Equation (2.33) is the singular integral equation to be solved for the unknowns a;,. To
solve this equation numerically requires the evaluation of the integrands that appear as
coefficients of the unknowns in eqns. (2.34) and (2.35). However, the singular integral of
eqn. (2.34) cannot be evaluated directly. The preceding section has outlined the method
by which the singularity has been removed from the integral. Its complete analytical
evaluation will be carried out in the following chapter. The numerical task remaining
involves only the straightforward evaluation of the double integrals in eqn. (2.35), the
double integral in the first term on the right in eqn. (2.42), the single integral in the
second term on the right in eqn. (2.42) and the single integral in the second term on the
right in eqn. (2.57). Again, all of these integrals are non-singular and can be evaluated
numerically without difficulty. As mentioned previously, all of these expressions can be
converted to apply to an observer on the side surface by the appropriate interchange of
variables.

The next chapter outlines the numerical procedure followed to obtain the

unknowns a;, which determine the unknown scattered pressure jump across the duct

walls. Once known they are utilized to calculate the scattered pressure at an arbitrary X

in the field from

J-1 Ki-1 J-1 KI1+K2-1

MX,
p,(>‘<,t)=———]{j§0 Zan[if+10] + T kg“aj‘k[lg?mgf,z]} (2.58)
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where the 1§} are the integrals defined in eqn. (2.29); all of these integrals are non-

singular so long as X is not on the duct surface. The total acoustic pressure radiated
from the duct is obtained by addition of the known incident pressure to the calculated

scattered pressure.
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3. Numerical Implementation

The previous chapters detailed the development of the set of equations which,
when solved, predict the acoustic field generated by a monopole source placed at the
center of a rectangular duct. The equations have been analytically treated to eliminate
problems in implementing numerical schemes. The governing equations for this problem
have been coded into a FORTRAN code and run on a 500MHz DEC-Alpha workstation.

Before addressing the issues in this chapter it is pointed out that the axial
integration in eqn. (2.33) is similar to that done by Kosanchick [4] in applying a boundary
integral technique to predict the acoustic field generated by propellers in lined as well as
rigid circular ducts. A shape function expansion was also posed there for the axial
behavior of the scattered pressure jump along the surface of the duct. However, the form
of the expansion proved to require adaptive techniques at the leading and trailing edges of
the duct due to sensitivity to the choice of parameters. The code developed for the rigid
circular cylinder was later modified to replace the propeller noise source model with a
point monopole. Results describing radiation from the monopole acoustic source were
discussed by Myers [6]. Prior to the current consideration of the rectangular duct, a new
set of shape functions were introduced to describe scattered pressure jump along the
surface of the circular duct. Through extensive numerical testing, it was found that this
new set of shape functions eliminated the need for additional adaptive techniques at the
leading and trailing edges of the duct. The current analysis for the rectangular duct
makes use of this new set of axial shape functions and they are discussed in the following

section of this chapter.
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3.1 Pressure Jump Representation

The scattered pressure jumps are represented as a series of products of two
sequences of carefully chosen shape functions as presented in eqn.(2.27). The shape
function expansions are chosen to model the oscillatory behavior expected on the duct
surface as well as the appropriate behavior of the pressure jump at the leading and trailing
edges of the duct. With these criteria in mind, the shape function expansion for the axial
direction is discussed first.

It is known that integral equations like the one under consideration here do not
have unique solutions until further conditions associated with the edge behavior of the
solution are specified. As in thin airfoil theory, the pressure jump that satisfies eqn.
(2.33) can be expected to have an inverse square-root singularity at the leading edge of
the duct when M # 0, and a square-root zero is anticipated at the trailing edge of the duct
[11]. This latter condition is the well known Kutta condition. These edge conditions can

best be imposed by introducing the variable

L
Y;=-Ecosx (3.1

where 0<« < n, and by defining

L
X; = ~ > COSKo (3.2)

Now, the axial variation of the scattered pressure jump is written in terms of the set of

functions commonly utilized in thin airfoil theory [11]:

1+cosx .
- j=0
‘P,-(K) ={ Ssink (3.3
sin jk, j=1...,1-1
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The leading edge singularity at x=0 is contained explicitly in the first term of the
sequence. It is easily shown using eqn. (3.1) that it grows as the inverse square root of
distance from the edge. The remaining terms vanish at the leading edge of the duct and
all vanish as the square root of distance from the trailing edge in accordance with the
Kutta condition. As mentioned previously, use of eqn. (3.3) with a uniform discretization
in x rather than Y,, has been shown to eliminate the need for additional adaptive
techniques in handling the square root singularity at the leading edge of the duct. Most
importantly, the Cauchy principal value integral of eqn. (2.54) can be obtained
analytically for the shape function expansion posed in eqn. (3.3). This analytical result
will be discussed in the next section.

The variation in the scattered pressure jump in the lateral direction on the wall
surfaces is expected to be similar to that seen in the incident pressure field. This variation
can be replicated by a sequence of functions that are sinusoidal in form. Therefore, the
shape functions modeling the lateral oscillations of the jump on the surfaces of the duct

are taken in the form

1 k =0
wi(Ys) =4 Y. +b (39
sm|:(2k—1)7t( b ) k=1,.,K-1
and
1 k =Ki

wi(Y) =1 | Yita (3.5
Siny (2k _2K‘_1)7t 22 k =Ki+1,...,Ki+Kz:—1

where K, and K, are the finite number of functions to be used in the sequences. Both sets

of functions are symmetric about the midpoirts of their respective lateral surfaces.
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It is noted that only a finite number of functions are used. Choosing the correct
number of functions from each shape function expansion set is not a straightforward task.
The number of functions that is sufficient for an accurate solution varies depending on the
choice of problem parameters such as Mach number, frequency and length of duct in
relation to the cross-sectional geometry. The process of determining the proper number
of functions is discussed later in conjunction with a numerical discussion of a sample

problem.

3.2 Principal Value Integral

The Cauchy principal value that appears in eqn. (2.57) can be evaluated
analytically for the shape functions defined in eqn. (2.33). By utilizing the relation

BE=Y;-X, and the transformation of eqn. (3.1), the integral becomes

lﬁPV) - 2 BZ-a_ L2 L(Yz_)_dyl - _2 ﬁz i} (pJ(K)

sin kdx (3.6)
0X3 -Ln2 (Y; - X;) 0X3 0 COSK —COSKo

The shape functions are substituted into eqn. (3.6) and the known integral

x coSNK 7 sin nk
A& dk = — 2 (3.7)
0 COSK —COSKo sin Ko

derived, for example, by Karamcheti [11], is used. For j=0 this yields

: 0 p Mreosk o 2579 [04n]=0 (3.8)
6X30(cos|< —cosxo) X,

=-2p
When j>0, eqn. (3.6) is

o = SianSinK
2
l(jpv)_ ZB

X5 0 (cosK - cos Ko) (3.9)

Utilizing the trigonometric identity
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cos(j~ 1)k —cos(j+1)x

sin jk sink = 2 (3.10)
and the relation established in eqn. (3.7), eqn. (3.9) is
o . —4np? j sin jx
(V) — 2 2_- = _ .
I B . (n cos _]Ko) L S, (3.11)

where eqn. (3.2) has been utilized to obtain the derivative with respect to X;. The results
expressed in eqns. (3.8) and (3.11) constitute, in analytical form, the entire effect of the

singularities in the integral equation (2.33).

3.3 Method of Collocation

Given a choice of the number of shape functions J, K,, and K,, there are a total of
J(K,+K,) unknown coefficients a;, to be determined to complete the solution of eqn.
(2.33). Although there are numerous techniques available, the method of collocation [12]
is the technique utilized here to obtain the solution. This method involves the selection of
a grid of observer points on the surface at which the integral equation eqn. (2.33) is
satisfied exactly, thus producing a set of inhomogeneous linear algebraic equations for
the unknown coefficients. In the current work, however, the method is supplemented by
imposing the obvious physical condition that the pressure jumps on each wall should
equal one another at the corners where the walls meet. Thus, for example, it will be
required that 7,(X;,b) = 7;(X;,a). If an unlimited number of functions were used in
each series expansion, this condition would presumably not be necessary. However, the
constraint imposed by the corner condition has been found to lead to an accurate
representation of the jump in scattered pressure using what appears to be as few shape

functions as possible.
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The grid of observer points used here consists of J locations evenly distributed
along the X, direction of the surface over the interval -L/2< X;<L/2. Because of the
symmetry present in the current problem, only one quarter of the perimeter of the duct
must be considered. Thus, K, evenly distributed observer locations are chosen over the

interval 0 < X,< b on the top surface, and K,-1 locations are distributed over 0 < X;< a

on the side. The integral equation is satisfied at these J(K,+K,-1) points. The remaining
J equations necessary to complete the algebraic system are obtained by imposing the
corner condition at the J axial stations of the grid.

The first and last axial collocation locations are at a distance D* in from the
leading and trailing edges of the duct. The first grid point for each side is placed at the
center of each side (i.e., X,=0, X,=0) and the last is chosen at a distance of 10% of the

half length of the side in from the comner.

3.4 Numerical Integration

With the set of collocation points defined, the numerical evaluations of the
integrals of eqn. (2.34) is discussed. Four point Gauss-Legendre Quadrature is utilized to
complete all of the necessary integrations [12,13]. The integrands in eqn. (2.34) are all
non-singular and are well behaved and can be numerically integrated accurately given
that the proper discretization is utilized. The discretizations required along Y, and Y, are
independently determined based on the oscillatory behavior of the integrands. For the
surfaces X, = +a, the oscillations of the integrand are governed by the shape functions

v, (Y,) and the exponential function in terms of € and 1 as
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Y.+b i
sin[(2k—1)n( % )]e‘“ emt (3.12)

The Y, oscillations are most rapid when £=0 and £=0. If the sine term in eqn. (3.12) is

rewritten in exponential form, the fastest oscillatory behavior with respect to Y, is

e(i(Zk— l)n(Yz,:bJ . iu(y,—xz)) _ ei((Zl;—bl)n +a]Y; ei((Zk;l)u_uxz) (313

Therefore, the wavelength of the fastest oscillation is

S — s
T k-] (319
o 7
2b
The total number of panels along the X, = +a surface is calculated using
2b
Ng=Py— (3.15)

S

where P, is the number panels chosen per wavelength. This parameter allows for the
optimization of the level of discretization utilized. Two panels per wavelength were
chosen. The same procedure determines the most rapid variation in the oscillatory
behavior of the integrand in eqn. (2.34) on the surfaces X.=+b .

The axial discretization for the Y, integration of all of the functions expressed in
eqn. (2.33) is examined now. The relationship between the variables Y; and x was
established in eqn. (3.1). Utilizing an even distribution of integration points in «k leads to
a clustering of integration points in Y, around the leading and trailing edges of the duct
eliminating the need for additional adaptive techniques. The length of the duct is
discretized evenly in k on the interval [0,n]. The variation in the axial direction is

described by
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sin ji ef@Vs ' +e’ (3.16)

The oscillations in k are most rapid when n=0 and £=0. If the sine term in eqn. (3.16) is
written in exponential form and & is written in terms of k, then the most rapid variation in

the axial direction is approximated by

. . (L .
el el ~ e‘(E“”J“ (3.17)
Now the wavelength of the fastest oscillation is determined by
2n
Me=—T . (3.18)
o= +]
2

The total number of panels required for the integration in the axial direction is calculated

using

T
N¢ =Py — (3.19)

K
where again, P, is the number of panels per wavelength. Four panels per wavelength are
used for all of the axial integrations. The integration with respect to Y is rediscretized for
every j and, likewise, the integration with respect to either Y, or Y, is rediscretized for
every k. The goal is to utilize as coarse a discretization as possible while maintaining a
uniform level of accuracy. The testing of the accuracy of the level of integration utilized
will be explored in the following section.

At this point, the numerical techniques necessary to obtain the solution to the

integral equation in eqn. (2.33) have been described. In the next section the solution of a

sample problem is investigated.
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3.5 Sample Problem Solution

The previous sections outlined the methodology necessary to determine the
acoustic field generated by a monopole source placed in a rectangular duct. The
methodology is applied here to a sample problem to test the integrity of the FORTRAN

code. The following table indicates the parameters chosen for the sample problem:

Parameter Value Parameter Value

M 0.0 a 025m

L 0.5m b 0.5m
Frequency 750 Hz c 340.17 m/sec

Here, the frequency and duct dimensions are relatively small in order to minimize the
numerical effort required for the testing, and the duct and source are stationary in the
fixed medium. In this case, the incident field is symmetric in the axial direction about
X,=0 and therefore the jump in scattered pressure is also expected to be symmetric about
X;=0. Also, when M=0.0 there is no singularity in scattered pressure at the leading edge
of the duct. Thus, for this test case, the coefficients of the singular first terms and the
terms that are anti-symmetric about X,=0 (j=2,4,6...) in the axial shape function
expansions (2.27) must be driven to zero in the solution of the algebraic system that
results from collocation.

The incident monopole pressure field is illustrated in Figures 2-4. Figure 2 shows
the axial variation in the complex incident pressure amplitude in both real and imaginary
parts on the duct surface X,=a along its centerline X,=0. The complex incident pressure
amplitude for the lateral centerline X,=0 is shown in Figure 3 for the surface X,=a and is

shown in Figure 4 for the surface X,=b .
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The method of collocation is now used to solve for the coefficients a, in eqn.
(2.33). The grid of collocation locations is as discussed in section 3.3, and the axial
offset D* is taken to be 0.1L. Assuming that the collocation grid is adequate and that the
discretization discussed in section 3.4 yields accurate integrals, the number of functions
from the expansions (2.27) required to ensure a converged solution must be determined.
The oscillatory nature of the incident data function P’(X;) in eqn. (2.33) dictates the
number of functions required. However, this data function oscillates in a manner similar
to that of the incident pressure so that the number of functions required can be inferred
from the oscillations in the real and imaginary parts of the incident pressure illustrated in
Figures 2-4. It is seen in Figure 2 that about 1 2 oscillations exist in the incident pressure
along the length of the duct for the sample problem. Experience indicates that it is
necessary to include all terms in the expansions (2.27) up to terms that oscillate at least
twice as fast as the incident data [4]. The axial shape functions (3.3) for j =1 each have ]
half-oscillations over the length of the duct. Therefore, a minimum of 6 of these sine
functions are expected to be required to reproduce the 1 %2 wavelengths (J=7). A total of
8 functions are actually chosen. Similar considerations determine K, and K, from the
incident pressure amplitude plotted along the lateral centerlines X,=0 on the surfaces
X,=a and X,=b. These lead to the choices K,=8 and K,=6. Upon solving eqn. (2.33), the
coefficients aj, are obtained from which the scattered pressure jump is calculated utilizing
eqn. (2.27). The resulting pressure jump amplitude =, along X,=0 on the surface X,=a is
shown in Figure 5. It is seen that, as expected, the jump amplitude is symmetric about

X,=0 and there is no singularity present at the leading edge of the duct. Thus the scheme
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has driven the singular terms and the anti-symmetric terms in the expansions (2.27) to
zero as required. The jump amplitude m, on the surface X,=a laterally along X,=0 is
shown in Figure 6 and the jump amplitude 7, on the surface X,=b along X,=0 is shown in
Figure 7. In Figures 5,6 and 7 the jump amplitudes are all smooth and, as expected,
display oscillatory behavior similar to that of the corresponding plot of the incident field.

To determine if the solution obtained is converged, the number of functions used
in the expansions (2.27) is varied. First, K, and K, are held constant and J is varied as
shown in Figure 8. As J is increased there is little change in the scattered pressure jump.
A conclusion can be made here that a sufficient number of axial shape functions were
chosen. The same procedure is followed for the lateral functional expansions. Figures 9
and 10 show only minor changes when holding J=8 and varying the values of K, and K,
for the X,=0 lateral plane on the surface X,=a and on the surface X,=b, respectively.
Therefore, it can be concluded that using J=8, K,=8 and K,=6 is sufficient to accurately
represent the solution for the jump amplitude in this case. Further tests involving
increasing all three parameters simultaneously were carried out, and all supported the
same conclusion.

It is also necessary to verify the validity of the discretization utilized. This can be
achieved by either increasing the number of Gauss points or by increasing the number of
panels per wavelength, P,. Here the number of Gauss points is doubled from 4 points to
8 points. Figures 11 and 12 show that no apparent differences exist between results with
the 4 point and 8 point Gauss-Legendre schemes along the lines X,=0 and X,=0 on the

surface X,=a. Many other such plots were examined, and all indicated that the level of
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discretization utilized was sufficient to obtain accurate results. The remainder of the
results presented in this thesis are obtained utilizing the 4 point Gauss-Legendre scheme
with P,=2 for discretizing X, and X, and P,=4 when discretizing in X;.

Finally, the choice of collocation points is considered. The collocation points are
evenly distributed along the length of the duct and along half of each lateral side. The
axial locations are distributed evenly between points at a fixed distance D* in from each
end of the duct. A different set of collocation points results simply by changing the value
of D*. Figure 13 shows that the solution with D*=0.005L exhibits no significant
variations from the solution with D*=0.01L along the axial centerline of the surface X;=a.
Other points with varying D* values showed little variation in the solution as well.
Similarly, the first lateral collocation points are on the center of each side and the last is
placed at a distance 10% of the half-length of the respective side. The set of collocation
points is modified by changing the position of the last point. The last collocation point
was placed at a distance of either 9% or 11% of the half-length of the lateral surfaces.
Figure 14 shows only slight changes in the solution when the set of collocation points is
altered. The distance corresponding to 10% of the half-length is deemed reasonable since
variations as small as these seen in Figure 14 have an insignificant effect on the radiated
field which is the topic of the next chapter.

It should also be mentioned here that if the dimensions a and b were taken to be
equal then, upon solving the system of equations, the jump amplitudes n, and =, should
be identical. When the parameters selected for the sample problem were utilized in

conjunction with the condition that the dimension a was the same as dimension b, the
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jump amplitudes were found to be the same as expected. The same result was obtained
when the observer points were taken on one surface and thereby reducing the number of

unknowns.

3.6 Moving Duct Problem

While the problem discussed in the previous section was a useful test case, it is
also of interest to examine the solution for the jump amplitude when the duct is in motion
so that the jump is singular at the duct leading edge. Therefore, a case for which M=0.1
is presented here. The same numerical tests were also carried out for this case and led to
similar conclusions in regard to the accuracy of the level of discretization as well as the
choice of collocation locations. They will not be discussed further. For the moving case,
the same parameters as utilized in the previous problem were retained except that the duct
length was taken to be 2m. This is four times the length used in the sample problem and
therefore 4 times as many sine functions in the axial shape function expansion would be
expected to be required to obtain an accurate solution. However, for this flow case 25
functions from the expansion (2.27) were not sufficient. In fact, it was found that a total
of 52 axial functions were required before the solution was completely converged. It
appears that the need for so many functions arises because, in contrast to the circular duct
treated in ref. [6], the singularity at the leading edge varies in strength around the
perimeter of the duct. This differs significantly from the circular case where the
singularity was determined by a single point at the leading edge of the duct. This is one

reason why the rectangular duct problem is much more computationally intensive than
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the circular case treated in ref. [6]. A total of K,=8 and K,=6 functions from the lateral
surface expansions were found to be sufficient and no apparent change in the solution
was observed when these values were varied. Figure 15 shows the scattered pressure
jump on the surface X,=a along X,=0 for a rectangular duct in the presence of flow.
Notice the square-root singularity at the leading edge of the duct and the square-root zero
at the trailing edge of the duct.

The radiated field for the above sample problems, as was well as for a higher

frequency case are presented in the next chapter.
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4. Radiated Field

The previous chapters outlined the analysis necessary to determine the acoustic
field generated by a monopole source placed at the center of a rectangular duct and some
of the numerical checks made on the analysis for inconsistencies. Once  the  jump
amplitudes n;, and m, have been determined, the scattered pressure at any observer
location is obtained by substituting these jump amplitudes into eqn. (2.22). The total
pressure at any point in the field is then obtained through the simple addition of the
incident and scattered pressure at an observer point in the field. The actual or physical
pressure‘ for the incident, scattered or total pressure is the real part of its complex

counterpart. The corresponding root-mean squared (RMS) pressure is calculated in the

. [pe’ )
ms 2 ¢

where p is the complex conjugate of p. The sound pressure level (SPL) is determined

usual manner such that

by

SPL = ZOIOg(h] (4.2)

ref

where p.=2 x 10° Pa.

The incident, scattered and total pressures are illustrated in the following results
one cross-sectional plane at a time on the intersection of a sphere centered at the origin of
the body-fixed coordinate system and the plane of interest. These intersections are circles

along which are give:: polar plots or directivities of the radiated field about the plane of
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interest in terms of sound pressure levels in decibels (dB) from eqn. (4.2). A radius R of
5m was utilized for all of the directivities presented in this thesis. Figures 16(a)-(c)
depict the center planes of interest. The directivity angle is called 6 in each case, and it is
measured from the positive X, axis (0°<6<180°). This angle is utilized to obtain
directivity plots for planes that intersect the source so that the radius of the arc for these
polar plots is Sm. For planes that do not intersect the source, such as that shown in
Figure 16(d), the radius of the polar arc is less than 5Sm. Since the incident field is
spherically symmetric when M=0, repeated use of the same spherical radius leads to an
incident field that is the same for each directivity plot for this case.

Chapter 3 included a detailed numerical validation process as well as the
presentation of the jump amplitudes for the sample problem. The radiated field plots for
the sample problem in the center planes X,=0, X;=0, and X,=0 are presented as solid lines
in Figures 17 (plane in Figure 16(a)), 18 (plane in Figure 16(b)) and 19 (plane in Figure
16(c)), respectively. The symmetric nature of these field plots is expected due to the
symmetry in the pressure jumps seen earlier for this case. For a duct length of 0.5m, the
solid lines in Figures 17 and 18 illustrate significant differences between the incident and
scattered pressures at =90°. These give rise to a substantial enhancement in the total
field about 8=90° in the plane normal to the wide side (normal to surface X,=a) of the
duct. There is less apparent difference between the incident and scattered pressure in
Figure 19 resulting in only a slight enhancement about 6=90° in the plane normal to the
narrow side (normal to surface X,=b) of the duct. Figures 17 and 19 also indicate that the

monopole field is nearly unaffected by the duct in the direction of the central X, axis.
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The enhancement seen in Figure 17 is unexpected since the results for the circular
ducted fan problem presented in refs. [2-4] usually depicted shielding rather than
enhancement about 6=90°. However, the propeller in free-space radiates primarily in the
lateral direction so that its radiation is significantly altered by the presence of the duct.
The monopole radiates in all directions including axially to the ends of the duct. This
difference in source type could explain the enhancement shown in Figures 17-19. In Ref.
[6], the radiated field from a monopole in a circular duct was discussed. The code
utilized to obtain those results was modified as discussed in Chapter 3 and an identical
source to that utilized in obtaining the results for Figures 17-19 was specified. Figure 20
illustrates the directivity pattern for the scattered and total pressure fields for the circular
duct at M=0. It depicts a small enhancement in the total pressure field about 6=90° for a
duct length of 0.5m, and indicates that lateral shielding is obtained only if the duct length
is increased to 1m or more. Thus, monopole radiation from a circular duct can also give
an enhancement like that shown in Figure 17. Furthermore, it appears that the potential
for shielding by the rectangular duct does exist but that the duct length needs to be
increased.

The broken lines in Figures 17, 18 and 19 illustrate the effect on the scattered and
total pressure directivities of increasing the rectangular duct length to Im and 2m. As the
duct length is increased, there is less apparent difference between the incident and
scattered fields which indicates that the potential exists for phase cancellation in the total
field. It is seen that some shielding is now obtained over the range 30°<6<150°.

Shielding is observed in the total pressure mainly in the center plane X,=0 (normal to
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narrow side) in Figure 19 and little shielding is observed in the center plane X,=0 (normal
to wide side) in Figure 17. It also appears that shielding exists only for a duct length of
2m or more. This is not surprising since the center plane normal to the narrow side
exhibits less enhancement in the 0.5m case. It might be expected intuitively that the wide
side of the duct should provide greater shielding from the source. However, this example
shows this not to be true in general. In fact, experience indicates that few general
statements can be made about the radiation patterns from ducts at low to moderate
frequencies. Figures 17 and 19 also show that the duct has little apparent effect in the
more nearly axial directions in the regions 150°<0<180° and 0°<6<30°.

Figures 21 and 22 depict the radiated field plots for various axial and lateral cross-
sectional planes for the moving duct problem as discussed in Chapter 3. The axial center
planes of Figure 21 (planes in Figures 16(a) and (c)) and lateral center plane X,=0 of
Figure 22 (plane in Figure 16(b)) intersect the source. Some shielding is obtained in
these planes in the total pressure about 6=90°. The moving duct does not appear to have
as pronounced a channeling effect on the total radiated field as was the case for the
circular duct propfan model in refs. [2-4]. This is due to the difference in source type.
However, Figure 21 depicts two distinct bulges that display the impact of the singularity
of the pressure jump on the leading edge and satisfaction of the Kutta condition at the
trailing edge of the duct when M # 0. These are no doubt counterparts of the channeling
effect seen for the propfan, but they only exist here in the plane normal to the narrow side
of the duct. The figure also shows that the level of shielding provided by the wide and

narrow sides of the duct does not differ as much in the presence of flow as compared to
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the differences witnessed in the M=0 case in Figures 17 and 19. Because of the
singularity at the leading edge of the moving duct, it is of interest to examine the
directivity in the plane that contains the leading edge (X,=-L/2). This plane is shown in
Figure 16(d). The directivity in the plane containing the leading edge along with the
corresponding plane containing the trailing edge (X,=L/2) is shown in Figure 22. The
incident field shown in Figure 22 is that for the X,=0 plane since the incident fields for
the leading edge, trailing edge and lateral center planes differ only slightly at M=0.1. For
a duct moving in the negative X;-direction, there appears to be greater lateral shielding at
the trailing edge than at the leading edge plane, but in general there are not many
differences in the radiation patterns in these planes.

Finally, to include a case more nearly representative of practical inlet
experiments, the frequency is increased to 1922 Hz. At this frequency, the incident field
is highly oscillatory, and a significant number of shape functions is required from the
expansions (2.27) to model this field accurately (at least K,=20, K,=10, J=12 as a
minimum). Limitations on time and computational resources lead to the decision to
reduce the dimensions of the duct and thereby reduce the number of functions required to
accurately model the field. The dimensions a and b were reduced by a factor of 4
(a=0.0625m, b=0.125m, L=0.5m) and only the stationary case M=0 was considered. This
allowed for accurate results to be obtained with K,=8, K,=6 and J=12. Figure 23 (planes
in Figures 16(a) and (c)) predicts significant shielding in the axial center plane normal to
the wide side of the duct as would be expected because the effect of the duct at high
frequencies is generally to beam sound in the axial directions. It is also of interest that,

despite the relatively high frequency, virtually no shielding is provided by the narrow
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side of the duct, so that the beaming effect occurs here only in planes normal to the wide
side. Note that the beaming occurs even though the duct is of very short length. In the
lateral planes, there is significant shielding in the region from 120°<6<60° as shown in
Figure 24 (planes in Figures 16(b) and (d)). Thus the beaming seen in the plane X,=0 in
Figure 23 extends over a rather large angle range in the directions above the wide side of

the duct.
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5. Concluding Remarks

This thesis has detailed the analysis necessary to model the radiated field
generated by a monopole source placed at the center of a moving rectangular duct
utilizing a boundary integral technique. The total pressure in the acoustic field was
written in terms of incident and scattered pressure components such that the scattered
pressure represents modifications to the incident pressure due to the presence of the duct.
The scattered pressure is discontinuous across the duct walls. It satisfies a generalized
wave equation with a source term involving the unknown pressure jump across the duct
walls. Through the use of an integral representation for the scattered pressure, a singular
boundary integral equation governing the unknown jump in scattered pressure is derived.
The jump is represented by a double series of carefully chosen shape functions, and a
solution to the integral equation is obtained using the method of collocation. With the
jumps determined, their substitution back into the integral representation of the pressure
produces the radiated pressure at any observer location.

The governing equations for the analysis presented in Chapter 2 were
programmed in a FORTRAN code which was run on a S00MHz DEC-Alpha workstation.
The singular analysis presented in Chapter 2 isolated the effect of the singularity in the
set of boundary integral equation thus eliminating problems with the implementation of
numerical schemes. Numerical verification of the FORTRAN code was presented in
Chapter 3. The chosen sets of shape functions were discussed and it was shown that

these functions allowed for a complete analytical evaluation of the singular part of the
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boundary integral equation. All the necessary numerical integrations were completed on
non-singular integrals.

Radiated field results for the some problems of interest were presented in Chapter
4. For a stationary duct at a frequency of 750Hz, lateral shielding was obtained for a duct
of sufficient length and was predominantly in the plane normal to the narrow side of the
duct. In fact, very little shielding was obtained in the plane normal to the wide side of the
duct, a result which is perhaps not expected intuitively. However, for a higher frequency
case of 1922Hz, significant shielding by the stationary duct was obtained in the plane
normal to the wide side of the duct. Interestingly enough, no shielding was provided by
the narrow side of the duct at this relatively high frequency.

For a moving duct, the radiated field for the monopole source can be compared to
that of the propeller source. The channeling effect witnessed with the moving ducted
propfan was not immediately apparent in the moving ducted monopole case except for
the appearance of two distinct bulges in the radiated field in the plane normal to the
narrow side of the duct. At a frequency of 750Hz, comparable shielding was provided by
all sides of the moving duct.

Because the analysis required to determine radiation from a rectangular duct is
fully two-dimensional, it requires significantly greater computational resources than for
the circular duct. Time and computer resources have allowed for only a few
representative examples to be studied in this thesis. They almost certainly do not fully
depict all of the interesting phenomena associated with radiation from a rectangular duct.
A true understanding of the radiated field would require a detailed parametric study

involving variations in duct dimensions, frequency and Mach number and it would be

43



beneficial to complete such a study. Furthermore, it would be a logical further step to
include an acoustic liner in the rectangular duct. Unfortunately, computational

requirements for this problem would greatly exceed those for the rigid walled duct.
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Figure 15: Scattered Pressure Jump Amplitude in
plane X,=0 on Duct Surface X,=a; a=0.25m,

b=0.5m, L=2.0m, f=750Hz, M=0.1
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Figures 16 (a)-(c): Spherical Radius for Radiated Field
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Figure 16 (d): Intersection of Plane and Sphere
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Figure 17 (a): Scattered Field in plane X,=0 at
Spherical Radius of 5m; a=0.25m,
b=0.5m, f=750Hz, M=0.0
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Figure 17 (b): Total Field in plane X,=0 at
Spherical Radius 5m; a=0.25m,
b=0.5m, f=750Hz, M=0.0
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Figure 18 (a): Scattered Field in plane X,=0 at
Spherical Radius 5m; a=0.25m,
b=0.5m, f=750Hz, M=0.0
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Figure 18 (b): Total Field in plane X,=0 at
Spherical Radius 5m; a=0.25m,
b=0.5m, f=750Hz, M=0.0
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Figure 19 (a): Scattered Field in plane X,=0 at
Spherical Radius 5m; a=0.25m,
b=0.5m, {=750Hz, M=0.0
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Figure 19 (b): Total Field in plane X,=0 at
Spherical Radius 5m; a=0.25m,
b=0.5m, f=750Hz, M=0.0
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Figure 20 (a): Scattered Field in plane X,=0 at
Spherical Radius 5m; M=0.0,
Circular Duct Radius=1.0m
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Figure 20 (b): Total Field in plane X,=0 at
Spherical Radius 5m; M=0.0,
Circular Duct Radius=1.0m

64



i I T I 1§ ! v i I 1

- 200 . T
«l T a----- Incident Fieid
%_ = 180 |- X2=0 Plane
b . e X,=0 Plane
ol 160 |- .
m
©r BT .
_1 o a0 T
al 120 - °
A+ s 120k 60°
3
aF 100 =
i |
e -
=N 3 ’
(72}
[72}
2 _]
o
© -
c N
=10 ;
o} A
[5) -

Figure 21 (a): Scattered Field at Spherical Radius

5m for Moving Duct; a=0.25m,
b=0.5m, L=2.0m, f=750Hz, M=0.1
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Figure 21 (b): Total Field at Spherical Radius
5m for Moving Duct; a=0.25m,
b=0.5m, L=2.0m, f=750Hz, M=0.1
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Figure 22 (a): Scattered Field at Spherical Radius
5m for Moving Duct; a=0.25m,
b=0.5m, L=2.0m, f=750Hz, M=0.1
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Figure 22 (b): Total Field at Spherical Radius
5m for Moving Duct; a=0.25m,
b=0.5m, L=2.0m, f=750Hz, M=0.1
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Figure 23 (a): Scattered Field at Spherical Radius
5m; a=0.0625m, b=0.125m,
L=0.5m, f=1922Hz, M=0.0
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Figure 23 (b): Total Field at Spherical Radius
5m; a=0.0625m, b=0.125m,
L=0.5m, f=1922Hz, M=0.0
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Figure 24 (a): Scattered Field at Spherical Radius

5m; a=0.0625m, b=0.125m,
L=0.5m, {=1922Hz, M=0.0
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Figure 24 (b): Total Field at Spherical Radius
5m; a=0.0625m, b=0.125m
L=0.5m, f=1922Hz, M=0.0
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